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ABSTRACT 
 
 

he he Philippines is home to about half of the world's 
65 mangrove species, representing 50% of mangroves 
globally. As an archipelagic country, mangrove 
forests offer a variety of ecosystem goods and 
services, from coastal protection to carbon 

sequestration, which play a vital role in climate change 
mitigation. Understanding mangroves' changing extent and 

condition is critical and valued, as these impact climate, 
biodiversity, and ecosystem service provision. However, little 
has been done to account for these attributes. Thus, the study 
aimed to construct physical ecosystem accounts for mangroves 
in Occidental Mindoro, Philippines, encompassing spatial 
distribution and extent, and develop a physical accounting table. 
Using cloud-based remote sensing on the Google Earth Engine 
(GEE) platform, this research contributes to broader ecosystem 
accounting efforts for the West Philippine Sea, providing 
evidence-based insights for effective policymaking and 
decision-making. Mangrove extent modeling was conducted 
using a three-tiered approach, guided by the spatial framework 
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of the System of Environmental-Economic Accounting (SEEA) 
Ecosystem Accounting, to improve accuracy. 
      
Vegetation indices such as Mangrove Vegetation, Normalized 
Difference Vegetation, Normalized Difference Mangrove, 
Modified Normalized Difference Water, and the Green 
Chlorophyll Vegetation were employed. Statistical parameters 
for feature objects were selected and applied in the random 
forest classifier. In 2021-2023, during the dry season with lesser 
clouds, composite images were produced by combining spatially 
overlapping ones into a single picture based on an aggregation 
function. These indices delineated the area of mangroves using 
remotely sensed imagery efficiently and precisely. Combining 
these spectral indices resulted in an overall mangrove extent of 
about 2,096.74 ha, with an overall classification accuracy of 
87.33 percent and a Kappa coefficient of 0.80. Similarly, 
Sentinel-2A images and the GEE platform accurately assessed 
changes in the extent of mangrove forests within the coastal 
ecosystems of the West Philippine Sea. 
 
 
INTRODUCTION 
 
The Philippines' unique geographical features have led to high 
terrestrial and marine endemism, making it one of the world's 
most biodiverse countries (Carpenter and Springer 2005). The 
country boasts a coastline stretching over 36,989 km, which is 
one of the longest in the world, and is home to diverse coastal 
and marine habitats (CIA 2007). Along these areas lie diverse 
mangrove ecosystems that are home to 65 mangrove species in 
the country (Kathiresan and Bingham 2001 as cited by 
Primavera et al. 2004), representing 50 percent of the global total 
(Primavera et al. 2004). This led to the Philippines being 
recognized as one of the 15 leading mangrove-rich countries 
worldwide (Long and Giri 2011). According to Brown and 
Fischer  (1918), the extent of mangroves in the Philippines 
during the 1920s was estimated to be between 400,000 and 
500,000 ha. However, by the year 2000, it had decreased by 
almost 50 percent. In the study of Garcia et al. (2014) on the 
status of Philippine mangroves, potential threats were driven by 
aquaculture development, land conversion to agricultural use, 
urbanization and an increase in human settlements, deforestation, 
and fuel and charcoal making  
 
The Philippine government heavily supported aquaculture and 
shrimp farming in the 1970s (DENR, 2013). This was driven by 
good market prices and policies like PD 704 (Fisheries Decree 
of 1975), which offered loans and land use rights for fishpond 
construction (DENR, 2013). While the Forestry Code permitted 
some protection for mangroves, it failed to enforce these 
regulations, resulting in the conversion of large areas of 
mangroves into fishponds and a sharp decline in extent (DENR, 
2013). 
 
Several studies have identified aquaculture development as the 
most significant potential threat to the diversity of mangrove 
species, followed by urbanization, conversion to agriculture, 
overutilization for manufacturing uses such as timber and 
charcoal making, and climate change (Garcia et al. 2014). In 
response to the rapid decline of mangroves due to aquaculture in 
the 1970s, Philippine environmental policy in the 1980s shifted 
decisively towards conservation. Several key developments, 
including constitutional entrenchment, protected area 
designation, buffer zone management, and rehabilitation 
initiatives, marked this legislative transformation (DENR, 2013). 
Conservation trends emerged in the 1980s and persisted 
throughout the 1990s. In addition, the government implemented 
policies to oversee the management of mangroves, emphasizing 
the engagement of communities, Non-Government 

Organizations (NGOs), and People's Organizations (POs) 
(DENR, 2013). 
 
Consequently, approximately 3 percent of the 7.2M ha of forest 
cover reported in 2003 is mangrove (FMB, 2003). According to 
the latest statistics from the National Mapping and Resource 
Information Authority (NAMRIA) on terrestrial land cover, the 
country comprises around 6.6M ha of forest, which encompasses 
closed, open, and mangrove (NAMRIA, 2020). The mangrove 
forest, which accounts for 4.68 percent of the total forest cover, 
or 311,512.54 ha, is mostly found in the island of Palawan, 
Bangsamoro Autonomous Region in Muslim Mindanao 
(BARMM), and Region 8, which have the highest distribution 
(NAMRIA, 2020).  
 
Understanding mangroves' changing extent and condition is 
critical and valued, as these impact climate, biodiversity, and 
ecosystem service provision. Over the past decades, gains and 
losses in the extent of mangrove ecosystems have been observed. 
Given that these structurally complex ecosystems serve as 
crucial breeding grounds for fishes, minimize shoreline erosion, 
reduce the effects of flooding and waves, and maintain and 
regulate coastal elevation in the event of sea level rise, the loss 
of their extent can impair the flow of these services. In contrast, 
the gains in mangrove extent increase carbon accumulation and 
storage and floral and faunal biodiversity. Mangroves are 
important, and thorough monitoring is required to ensure their 
survival and optimize their contribution to the preservation of 
the marine and coastal environment. This emphasizes the 
importance of developing and improving tools for producing 
mangrove extent maps, as well as detecting significant changes 
in mangrove ecosystem distribution over time. 
 
The distribution of mangroves and monitoring initiatives has 
become crucial due to a significant decrease in their extent in 
recent years (Mariano et al. 2022). Field inventory is a highly 
efficient method for monitoring these ecosystems.  However, it 
can be labor-intensive due to the inaccessibility and obstructions 
present in their habitat, such as pneumatophores and prop roots 
(Tomppo et al. 2008). Remote sensing (RS) technology enabled 
the observation and mapping of large areas with higher accuracy, 
speed, and scope than conventional field measurement but with 
some limitations and gaps. Pillodar et al. (2023) noted that the 
country's archipelagic features complicate mangrove RS 
mapping due to the need to evaluate numerous areas, the high 
cost of obtaining high-resolution datasets, and the software's 
limited applicability for mapping large areas. This suggests that 
an increasing number of papers were published using low- to 
medium-resolution data, and the overlapping canopies 
complicates species identification on the map. 
 
In recent years, state-of-the-art technology in RS and 
Geographic Information Systems (GIS) has been rapidly 
developing, allowing more accurate information concerning its 
extent. Earth Observation data, such as Sentinel-2A, offers high-
resolution optical imagery equipped with specialized bands 
useful for analyzing agricultural practices, forest management, 
and the assessment of land use and land cover dynamics 
(Chrysafis et al. 2020). Researchers are evaluating various 
approaches using Sentinel 2 data, including land use/land cover 
(LULC) mapping and change analysis (Baloloy 2021; Addabbo 
et al. 2016; Topaloğlu et al. 2017), vegetation change detection 
(Baloloy 2021; Eklundh et al. 2012), vegetation health 
assessment (Baloloy 2021; Rao et al. 2017), and species 
detection and recognition (Baloloy 2021; Immitzer et al. 2016). 
Sentinel 2 plays a significant role in mapping mangrove extent, 
enabling various categorization approaches like supervised, 
unsupervised, object-based, or index-based methods. 
Furthermore, it is capable of effectively mapping biophysical 
variables such as land use-land cover change detection, 
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chlorophyll content, water content, and leaf area index (Drusch 
et al. 2012). Therefore, it performed coastal and inland water 
surveillance and assisted with risk assessment and in disaster 
mapping. Researchers have examined the effectiveness of 
various classification algorithms, including MLC (Maximum 
Likelihood Classification), SVM (Support Vector Machine), 
ANN (Artificial Neural Network), and RF (Random Forest), in 
mapping the extent of mangroves using Sentinel-2A satellite 
images. Each algorithm yielded varying accuracy levels, 
displaying promising results on mangrove extent mapping 
(Roslani et al. 2003; Giri and Muhlhausen 2008; Deilmai et al. 
2014; Kanniah et al. 2015; Ma et al. 2017; Liu et al. 2021, as 
cited by Baloloy 2021). 
 
In this study, the functions of GEE and Sentinel-2A to produce 
a map extent of Occidental Mindoro for ecosystem accounting 
were used. GEE is a platform that maintains satellite imagery in 
a publicly accessible data archive, as it provides cloud-based 
environmental data analytics (Gorelick et al. 2017).  This 
collection contains historical images of the Earth that span over 
40 years. Sentinel-2A satellite imagery, processed through the 
GEE Cloud Computing platform, will be used in this study to 
evaluate its effectiveness for mangrove mapping in the coastal 
areas of Occidental Mindoro.  
 
The extent of Occidental Mindoro's mangrove ecosystem is 
currently available in global datasets such as Global Mangrove 
Watch and IUCN Global Ecosystem Typology 2.0 as well as 
local datasets developed by NAMRIA through land cover and 
coastal resources maps. Other sources of ecosystem extent on 
mangroves are available in Environmental Systems Research 
Institute (ESRI) Land Cover Time Series (Karra et al. 2021), 
Mangrove Vegetation Index-based Mangrove Map (Baloloy et 
al. 2020), National Aeronautics and Space Administration – Jet 
Propulsion Laboratory (NASA-JPL) Global Mangrove Map 
(Giri et al. 2011 and Simard et al. 2019), Climate Change 
Initiative Land Cover (ESA Climate Change Initiative 2017), 
European Space Agency (ESA) World Cover (Defourny et al. 
2012), High-resolution Global Mangrove Forest (Jia et al. 2023), 
Dynamic World Data (Brown et al. 2022), and Global Land 
Cover Dataset (GLCFCS30D) (Li et al. 2023).  

 
Hence, this research aimed to develop physical ecosystem 
accounts for mangroves in Occidental Mindoro aligned with the 
United Nations’ System of Environmental Economic 
Accounting (SEEA) framework. Specifically, the study sought 
to: (1) map mangrove spatial distribution and quantify areal 
extent in the study area, utilizing cloud-based remote sensing 
and optimized mangrove vegetation indices within GEE; and (2) 
construct a physical accounting table. Thus, this study will 
contribute to the broader effort of establishing SEEA-compliant 
ecosystem accounts for the West Philippine Sea, providing 
critical data for evidence-based policymaking. 
 
 
MATERIALS AND METHODS 
 
Study Site 
 
The research was conducted in the mangrove habitats of 
Occidental Mindoro, Philippines, in September 2023. The 
province is part of Region IV-B (MIMAROPA-Mindoro 
(Occidental Mindoro), Marinduque, Romblon, and Palawan), 
which is located in the southwest of the country and is bordered 
by the Sulu Sea and the West Philippine Sea (Figure 1). 
Occidental Mindoro has a total land area of 597,228.63 ha 
accounting for 2 percent of the Philippines' total land area (HDX 
2016). The pilot site is part of the project “Natural Capital 
Accounting of Coastal and Marine Ecosystems in the West 
Philippine Sea,” under the program “Resource Inventory, 
Valuation and Policy in Ecosystems Services Under Threat (RE-
INVEST): The Case of West Philippine Sea,” (RE-INVEST 
WPS Project 2) with project duration from April 2022 to March 
2025. Implementation sites include Kalayaan Island Group, 
Western Palawan, Occidental Mindoro, Oriental Mindoro, 
Bataan, Zambales, and Pangasinan funded by the Department of 
Science and Technology - Philippine Council for Agriculture, 
Aquatic and Natural Resources Research and Development 
(DOST-PCAARRD). The methodology flowchart in mangrove 
ecosystem mapping using developed mangrove vegetation 
indices is illustrated in Figure 2. 
 

 
Figure 1: Location map of Occidental Mindoro, Philippines in the West Philippine Sea
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Figure 2: Methodology flowchart in mangrove ecosystem mapping 
using developed mangrove vegetation indices 

Satellite Data and Pre-Processing 
 
Sentinel-2 Multispectral Imager Instrument (MSI) Level-2A 
imagery of the Occidental Mindoro coastline was obtained from 
the Sentinel Scientific Data Hub (European Space Agency 2018). 
Top-of-Atmosphere (ToA) reflectance data previously has been 
orthorectified, georeferenced, and radiometrically calibrated. 
 
The study site is set on the coastal areas of Occidental Mindoro, 
estimated at 1 km landward and 300 m seaward. The 
maskClouds function was employed to generate cloud-free 
mosaics from satellite imagery. It operates by identifying and 
masking cloud-contaminated pixels, effectively assigning them 
a null value. This process renders these pixels transparent during 
image compositing, thus excluding them from the region of 
interest and ensuring accurate analysis of the underlying surface 
(Google Earth Engine, no date). Next, is by adding the spectral 
indices designed for mangrove vegetation in a pixel, as well as 
water features (Table 1). This study evaluated four distinct 
models, each utilizing different combinations of spectral indices 
to assess mangrove characteristics. These models included: (1) 
the Mangrove Vegetation Index (MVI), (2) the Normalized 
Difference Mangrove Index (NDMI), (3) a combined MVI and 
NDMI Model, and (4) an expanded model incorporating MVI, 

NDMI, and additional spectral indices. The supplementary 
indices in the fourth model consisted of the Modified 
Normalized Difference Water Index (MNDWI), Green 
Chlorophyll Vegetation Index (GCVI), simple ratio, band ratio 
5/4, and band ratio 3/5. 
 
Table 1: Spectral indices for mangrove mapping using Sentinel-2A 
imagery 

Spectral Indices Band 
Ratio Source 

Mangrove Vegetation 
Index (MVI)  Baloloy et al. (2020) 

Normalized Difference 
Mangrove Index (NDMI)  Shi et al. (2016) 

Normalized Difference 
Vegetation Index (NDVI)  

Kogan (1995) and 
Tarplet et al. (1984) 

Modified Normalized 
Difference Water Index 
(MNDWI)  

Xu (2006) 

Green Chlorophyll 
Vegetation Index (GCVI)  Gitelson et al. (2003) 

Simple Ratio (SR)  
Birth and McVey 
(1968) 

Ratio 54 
(Difference between 
bands 5 and 4)  

                                                                         
-    

Ratio 35 
(Difference between 
bands 3 and 5)  

                                                                         
-    

 
Furthermore, temporal parameters set within April 2021 to June 
2023, the start and end months are characterized as the dry 
season in the Philippines, thus creating cloud-free images. 
Additionally, the study area is filtered with the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model by 
filtering elevations less than 65 m above sea level with NDVI 
and MNDWI masks. Mangrove habitat delineation was refined 
through the application of masking procedures to NDVI, 
MNDWI, and digital elevation model (DEM) data. This process 
aimed to isolate areas characterized by high vegetation density, 
exclude water-influenced areas, and constrain the analysis to 
elevation ranges known to support mangrove ecosystems within 
the study region (Figure 3). 
 

 
Figure 3: Composite images of the coastal areas of Sablayan, Occidental Mindoro, Philippines in the West Philippine Sea
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Constructing the Random Forest Classification 
 
The Random Forest (RF) machine learning method, introduced 
by Breiman (2001), employs an ensemble of decision trees for 
classification and prediction. Each tree contributes a single vote, 
and the result is determined by a majority voting process. 
Notably, RF exhibits advantages such as intuitive 
parameterization and robustness to collinear features and high-
dimensional data (Pelletier et al., 2016). 
 
In this study, the smileRandomForest classifier, part of the 
Statistical Machine Intelligence and Learning Engine (SMILE) 
library was utilized. Developed to enhance the performance and 
stability of earlier GEE classifiers, smileRandomForest is 
primarily designed for supervised classification. It operates by 

assigning data points, such as satellite image pixels, to 
predefined categorical classes based on input features. This is 
achieved through the construction and aggregation of individual 
decision tree predictions, a process that improves classification 
accuracy and reduces overfitting compared to single decision 
tree methods. 
 
Furthermore, SMILE can be directly implemented within GEE 
to assess its features of importance. However, as demonstrated 
by Jastrzebski (2018), accurate quantification of feature 
importance in RF models using SMILE requires a balanced 
distribution of reference data. A map showing the distribution of 
mangrove areas (identified by mangrove pixels) in Santa Cruz, 
Occidental Mindoro is illustrated in Figure 4. 
 

 
Figure 4: Estimated mangrove extent, derived from pixel classification, for the Municipality of Santa Cruz, Occidental Mindoro

Formulation of combined vegetation indices 
 
This study utilized mangrove vegetation indices, including MVI, 
NDVI, NDMI, the Modified MNDWI, and GCVI. In contrast, 
these vegetation indices exhibited bands capable of reflecting 
the spectral waves in mangrove ecosystems. According to 
Baloloy et al. (2020), studies related to mangrove vegetation 
properties and spectral responses, short wave infrared 1 
(SWIR1), Near-Infrared  (NIR) (Band 8), and green (Band 3) are 
the three multispectral bands usually found in MVI. The 
utilization of SWIR and NIR bands has been determined to be 
highly effective in the characterizations of water absorption in 
vegetation and the assessment of vegetation greenness, 
respectively (Manna and Raychaudhuri, 2020; Wang et al., 
2018). 
 
Index Accuracy Assessment 
 
To ensure a representative dataset for model training and 
validation, a stratified random sampling approach was employed 
utilizing GEE. A total of 300 sampling points were generated 
within the coastal areas of Occidental Mindoro. Stratification 
was implemented to proportionally represent both mangrove and 
non-mangrove classes, thereby minimizing bias and enhancing 
the reliability of subsequent analyses. This was achieved 
through the creation of a stratPoints FeatureCollection within 
GEE, where random points were generated and assigned class 
labels based on a pre-existing classification layer. The 
stratPoints collection ensured that the sampling points were 
spatially distributed across the defined coastal extent of 
Occidental Mindoro, effectively capturing the inherent 
variability of the study area. Stratified random sampling, 

implemented via GEE, yielded a strong and representative 
dataset, essential for the accurate training and validation of the 
Random Forest classification model. 
 
For the Accuracy Assessment, the overall accuracy, user’s 
accuracy and producer’s accuracy, and kappa coefficient were 
assessed using the following formula: 
 
Equation 1: 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝑂𝐴) =
∑!"#$ 𝑛%%

𝑁 	

 
Where: 
nii = number of correctly classified samples for class 𝑖 (diagonal 
elements of the confusion 
matrix) 
k = total number of classes 
N = total number of reference (ground truth) samples 
 
Equation 2: 
 

𝑈𝑠𝑒𝑟’𝑠	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝑈𝐴) =
𝑛""

∑!%#$ 𝑛%"
	

 
Where: 
𝑛"" = correctly classified samples for class 𝑖 
 ∑!%#$ 𝑛%" = total number of samples classified as class 𝑖 
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Equation 3: 
 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟’𝑠	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝑈𝐴) =
𝑛""

∑!%#$ 𝑛"%
	

Where: 
𝑛"" = correctly classified samples for class 𝑖 
 ∑!%#$ 𝑛"%  = total number of actual (reference) samples for 
class 𝑖 
 
Equation 4: 
 

𝐾 =
𝑃𝑜 − 	𝑃𝑒	
1 − 	𝑃𝑒 	

Where: 
𝑃𝑜 = overall accuracy of the model 
𝑃𝑒 = measure of the agreement between the model predictions 
and the actual class values as if happening by chance 
 
Overall, accuracy represents the percentage of the mapped area 
that aligns with the reference data, indicating the likelihood of a 
random point on the map being correctly categorized. User's 
accuracy quantifies the reliability of a specific class on the map, 
showing the probability that a location identified as class 'i' truly 
corresponds to class 'i' in the reference. Producer accuracy 
measures how well a specific reference class is represented on 
the map, reflecting the probability that a location of reference 
class 'j' is correctly classified as class 'j' in the map. 
 
Development of Mangrove Physical Accounts 
 
A three-tiered approach based on the System of Environmental 
Economic Accounting SEEA spatial framework for modeling 
was used to develop the mangrove extent. This study's 
limitations include its focus on estimating the recent mangrove 
extent and classifying land cover into binary categories of 
mangrove and non-mangrove. To expand the scope beyond 
mangrove/non-mangrove classification, future research can 
incorporate a comprehensive land and marine cover 
classification, utilizing the NAMRIA land cover dataset and 
coastal resources map, which includes mangroves as a distinct 
class. A consistent methodology can be applied to coastal and 
marine areas within the 2015 and 2020 datasets to construct 
opening and closing physical account tables for Occidental 
Mindoro. However, the optimal classification model developed 
in this study was employed to reclassify newly identified 
mangrove areas, facilitating the creation of updated mangrove 
physical accounts for subsequent analyses. 
 
 
RESULTS AND DISCUSSION 
 
Cloud Free Annual Mosaic of Sentinel-2A 
 
Clouds and shadows were noted in the Sentinel-2A image series 
from 2021 to 2023 and are regarded as one of the challenges, 
particularly in the Philippines, when dealing with remotely 
sensed photos. The presence of various objects such as clouds, 
haze, and shadows, may have an impact on the model's overall 
performance in capturing changes in mangrove cover mapping, 
leading to inaccuracies, inconsistencies, and false detection 
making long-term mapping and monitoring of coastal 
ecosystems challenging (Mwita et al., 2012; Cihlar, 2000). To 
filter clouds, the study employed images with less than 20 
percent cloud coverage. The median was used to consolidate the 
collection of photos, minimizing the image collection by 

computing the median of all values at each pixel across all 
matching bands. 
 
Developed Mangrove Vegetation Indices and Random 
Forest Classification 
 
The coastal mangrove vegetation in Occidental Mindoro, 
Philippines was evaluated using Sentinel-2A's spectral color 
composition and different combinations of developed indices 
produced by Shi et al. (2016) and Baloloy et al. (2020). Before 
using smileRandomForest to classify mangroves, variables such 
as elevation data (<65 m above sea level) and composite images 
were used to differentiate between mangroves and non-
mangroves. Setting the parameters for mangrove filtering 
enabled the removal of areas in elevations above 65 masl. The 
adjustment was determined by the absolute difference between 
ICESat-2 ground elevation data and the TanDEM-X DEM. This 
approach resulted in a discrepancy of less than 50 meters, a 
threshold applied in Yu et al.'s (2024) global mangrove canopy 
height mapping study. 
 
To assess the performance of different RF classification results, 
the total pixel sample and number of training and testing data 
were examined, with 80 percent used for training data and the 
remaining 20 percent for testing data. Machine learning models 
were validated by dividing data into training and testing sets, 
where the training set, with labeled data, was used for model 
development (Salazar et al., 2022). The separation of data into 
training and testing sets was a critical step in the machine 
learning workflow. This allows the model to learn through the 
discovery of patterns and relationships within the dataset 
(Sivakumar, 2024). As a general rule, the training set is larger 
than the testing set, and in this study, it was set at 80 percent. 
This decision was based on the understanding that a larger 
training set typically results in improved model performance. 
Testing, on the other hand, was used to evaluate the model's 
performance, including its ability to avoid overfitting and 
underfitting. 
 
The mangrove and non-mangrove covers were assigned values 
of 1 and 0, respectively. Each scenario, which comprised both a 
stand-alone index and a combination of recognized mangrove 
vegetation indices, was tested to evaluate how they performed 
when mapping mangrove areas. The Mangrove Vegetation 
Index or Model 1 (MVI) and the Normalized Difference 
Mangrove Index or Model 2 (NDMI) have similar total sample 
pixel sizes (253,234 and 253,227, respectively), as well as 
mangrove extents (2,124.41 and 2,161.64 hectares). However, 
there are minor differences in the number of training and testing 
data. MVI has 202,686 training data pixels, but NDMI has 
202,616, indicating that MVI used 70 more training data pixels 
than NDMI during classification. On the other hand, MVI has 
50,548 tested data pixels, whereas NDMI has 50,611, indicating 
that NDMI has 63 more tested data pixels than MVI. 
 
The study encompassed the combination of vegetation indices, 
including MVI and NDMI (Model 3), and a combination of MVI 
and NDMI, as well as MVI and NMDI and other spectral indices 
referred to as Model 4. Both vegetation indices captured a 
comparable number of mangroves, with combined MVI and 
NDMI and other spectral indices (Model 4) resulting in a 
mangrove extent of 2,096.74 ha and combined MVI and NDMI 
(Model 3) resulting in 2,085.41 ha. Both Models 3 and 4 
employed a comparable total sample pixel count of 253,219 and 
253,226 pixels, respectively. Figure 5 presents a comparison of 
mangrove distribution maps generated by four different 
modeling approaches. 
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Figure 5: Comparison of Four models of Occidental Mindoro mangrove map

Models 3 and 4 utilized marginally different training and testing 
datasets. Specifically, Model 4, incorporating combined MVI, 
NDMI, and additional spectral indices, employed 202,597 
training pixels, while Model 3, using only combined MVI and 
NDMI, utilized 202,856 pixels. Similarly, Model 4 used 50,629 
testing pixels, compared to 50,363 in Model 3. These minor 
variations in training and testing dataset sizes, observed across 
all models, are attributed to the consistent image data and the 
fixed train-test split ratio employed throughout the study. 
Notably, a larger training dataset is known to improve model 

learning capabilities (Sivakumar, 2024). All models were 
designed with an equivalent number of classes in both training 
and testing datasets to achieve class balance. This strategic 
approach was adopted to minimize bias during the training-
testing split and to ensure a robust and equitable evaluation of 
model performance, thus providing stable results, which are 
essential for reliable model comparisons (Sivakumar, 2024). 
The summary of the number of sample pixels on training and 
testing data, and the total extent of mangroves in Occidental 
Mindoro, Philippines, is illustrated in Table 2.

Table 2: Number of sample pixels on training and testing data, and total extent of mangroves in Occidental Mindoro, Philippines 

Vegetation Indices for 
Mangroves Total Sample Pixel Number Training 

Data (Pixels) 
Number of Tested 

Data (Pixels) 
Extent of Mangroves 

(ha) 

Mangrove Vegetation Index  253,234 202,686 50,548 2,124.41 

Normalized Difference Mangrove 
Index 253,227 202,616 50,611 2,161.64 

Combined MVI and NDMI 253,219 202,856 50,363 2,085.41 

Combined MVI and NDMI and 
other Spectral Indices 253,226 202,597 50,629 2,096.74 

Mangrove Extent Coverage and Accuracy Assessment 
 
Accuracy was assessed using key performance metrics, 
specifically overall accuracy, user's accuracy, producer's 
accuracy, and the Kappa coefficient. The combined spectral 

indices (Model 4) had the highest overall accuracy (87.33%), 
followed by NDMI or Model 2 (85.67%), MVI (Model 1) 
(83.33%), and the combined MVI and NDVI Model (Model 3) 
(82.33%).  
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User’s accuracy determines if a pixel labeled as mangrove truly 
represents one.  The combination of MVI and NDMI had the 
lowest user’s accuracy (65.63%), followed by the MVI method 
(67.97%) and NDMI (72.66%), while the combination of all 
spectral indices (Model 4) produced the best user’s accuracy in 
mangroves (76.19%). An actual mangrove pixel is likely to be 
classified as such based on producer’s accuracy. The NDMI has 
the highest producer’s accuracy (92.08%), followed by the MM 
(90.63%), the combination of all spectral indices (90.48%), and 
the NDMI. The Kappa coefficient provides a quantitative 
measure of agreement between observed and predicted 
categorical classifications, accounting for the possibility of 
agreement occurring by chance. A high Kappa coefficient 
indicates a strong concordance between the classified image 
generated by the model and the reference data. Comparative 
analysis of kappa coefficients demonstrated that Model 4 (0.80), 

utilizing a combination of MVI, NDMI, and other spectral 
indices, outperformed the other models. Specifically, NDMI 
(Model 2) achieved a kappa of 0.75, combined MVI and NDMI 
(Model 3) resulted in 0.70, and MVI (Model 1) yielded 0.65. 
 
Among all models, Model 4 or the combination of all eight 
spectral indices resulted in an overall mangrove extent of about 
2,096.74 ha, with a classification accuracy of 87.33 percent and 
a Kappa coefficient of 0.80 using 300 stratified random points 
generated in GEE (Table 3). Compared to employing MVI and 
NDMI independently, the combined spectral indices (Model 4) 
demonstrated the highest accuracy among the four RF scenarios. 
However, the independent accuracies of NDMI and MVI 
resulted in a closer overall accuracy of 85.67 percent and 83.33 
percent, respectively. 
 

Table 3: Mangrove class accuracy (user accuracy (UA) and producer accuracy (PA) and overall accuracy (OA) and Kappa Statistic (K) calculated from 
Random Forest Classification 

Vegetation Indices for 
Mangroves 

Overall 
Accuracy 

(%) 

User Accuracy (%) Producer Accuracy (%) 
Kappa 

Coefficient Mangroves Non-
Mangroves Mangroves Non-

Mangroves 

Mangrove Vegetation Index 83.33 67.97 94.77 90.63 79.9 0.65 

Normalized Difference 
Mangrove Index 85.67 72.66 95.35 92.08 82.41 0.70 

Combined MVI and NDMI 82.33 65.63 94.77 90.32 78.74 0.70 

Combined MVI and NDMI and 
other Spectral Indices 87.33 76.19 95.98 90.48 84.34 0.80 

The validation error matrix for the Random Forest classification 
using Model 4 revealed a detailed picture of the model's 
performance in distinguishing between mangrove and non-
mangrove areas. The matrix indicated 28,689 pixels correctly 
classified as non-mangrove (True Negatives), while 19,102 
pixels were accurately identified as mangrove (True Positives). 
However, the model also exhibited errors: 1,052 non-mangrove 
pixels were misclassified as mangrove (False Positives or 
commission errors), and 1,786 mangrove pixels were incorrectly 
labeled as non-mangrove (False Negatives or omission errors). 
Based on these values, the overall accuracy of the model was 
calculated to be approximately 94.6 percent, demonstrating a 
high degree of correctness in the classification. Further analysis 
revealed a precision of approximately 94.8 percent for mangrove 
classification, indicating that when the model predicted 
mangrove, it was correct nearly 95 percent of the time. The recall, 
or sensitivity, which measures the model's ability to identify all 
actual mangrove areas, was approximately 91.5 percent. These 
metrices collectively illustrate robust model performance, 
though with identifiable commission and omission errors, which 
should be considered in the interpretation of the resulting 
mangrove map. 
 
Mangrove Ecosystem for Coastal and Marine Ecosystem 
Physical Accounting 
 
The development of a delineated ecosystem supplies 
information on its extent, condition, monetary values, and its 
capacity to provide ecosystem services. These assets reflect a 
distinct boundary between biotic and abiotic components and 
their interactions. Moreover, these ecosystems are presented in 
the form of a physical map or table that displays their location, 
areal components, and spatial characteristics. For this study, the 

System of Environmental-Economic Accounting for Ecosystem 
Accounting illustrated that the most practical way to present a 
delineated ecosystem is by providing a measure of the surface 
area for different ecosystem types (United Nations, 2022). 
 
A limitation of this study is the absence of a comprehensive 
analysis of opening and closing extents for coastal and marine 
ecosystems within the province. To address this, Model 4 was 
used to integrate the derived mangrove extent with the most 
recent National Mapping and Resource Information Authority 
mangrove dataset. This integration, in comparison to the 2015 
NAMRIA dataset, facilitated the development of a physical 
extent account for the province. The 2015 marine and land cover 
maps produced by NAMRIA were derived from a digital/visual 
classification of 30-meter resolution Landsat 8 satellite imagery, 
supplemented by other available high-resolution satellite data, 
utilizing remote sensing and GIS techniques. In contrast, the 
2020 dataset was generated through digital interpretation of 10-
meter resolution Sentinel 2 imagery from the European Space 
Agency (ESA), spanning the period 2017-2021, and 
incorporating additional high-resolution satellite imagery. 
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 In terms of mangrove ecosystems, datasets on land cover and 
coastal resources maps are significant information as they 
provide knowledge on the amount and type of vegetation present 
from ridges up to the reef. Vegetation types affect the goods and 
services that an ecosystem can provide. Recalculation was done 
using Model 4, as post-processing was implemented in the 
mangrove extent. Discrepancies in areal measurements were 
observed due to methodological differences in defining the 
region of interest. Specifically, the region of interest employed 
in Google Earth Engine differed from the precise extent 
processed in Quantum Geographic Information System (QGIS 
3.34.5-Prizren), which was reprojected to World Geodetic 
System (WGS 1984 Zone 51 North), a coordinate system 
geographically optimized for Mindoro Island. 
 
Based on NAMRIA's overlaid data and developed mangrove 
extent, it recorded an area of 1,277.45 ha in 2015 and 2,026.94 
hectares by 2023 (Table 8). Over the nine years from 2015 to 
2023, a net gain of 749.49 ha (58.67%) in mangrove area extent 
was observed. While Lubang (6.59 ha, 41.87% relative change), 
Rizal (9.69 ha, 58.47%), Calintaan (13.75 ha, 54.51%), and 
Looc (17.05 ha, 17.71%) experience the least increase in 
mangrove extent, the remaining municipalities exhibited an 
increase ranging from 40 to 325 ha. Notably, Sablayan (324.90 
ha, 163.89%), San Jose (170.24 ha, 54.84%), and Magsaysay 
(117.61 ha, 81.35%) showed the most substantial expansion. 
With the extent retained in mangrove ecosystem of 1,187.64 ha, 
the primary drivers of mangrove increase were conversion from 
brush/shrubs (21.45 ha), agricultural areas (23.25 ha), 
aquaculture (16.06 ha), and inland water bodies (8.36 ha). 
Additionally, an increase in mangrove extent was also observed 
within water bodies (4.55 ha) and seagrass/seaweed beds (3.40 
ha). 
 
 
CONCLUSION 
 
This study utilized the use of Google Earth Engine (GEE) and 
Sentinel 2-A satellite images using the Random Forest 
Classification algorithm and mangrove indices to develop the 
extent of mangroves. GEE offers substantial computational 
capabilities and an extensive collection of remote sensing data 
and supplemental datasets, which collectively enhance the 
development of precise mapping accuracy. Additionally, 
random forests were excellent for assessing the physical 

accounts of mangroves while also detecting vegetation in a 
quick, consistent, and precise manner. Sentinel-2A and the GEE 
were useful tools for monitoring and assessing coastal and 
marine ecosystems. Furthermore, the best mangrove 
discrimination in the RF classifier was achieved when the 
combination of various developed mangrove vegetation indices 
and spectral indices was used, Model 4 of the study. The overall 
accuracy achieved by the RF classifier was 87.33 percent and 
0.80 for the Kappa coefficient. Meanwhile, MVI and NDMI 
overall accuracy accounted for 83.33 percent and 85.67 percent, 
and Kappa coefficients of 0.64 and 0.70, respectively. 
Additionally, Model 4, a Random Forest classification, achieved 
94.6 percent overall accuracy in distinguishing mangrove and 
non-mangrove areas, with 28,689 true negatives and 19,102 true 
positives. However, the model showed 1,052 commission errors 
and 1,786 omission errors, resulting in 94.8 percent precision 
and 91.5 percent recall. While demonstrating robust 
performance, these errors should be considered when 
interpreting the final mangrove map. Hence, Model 4, 
employing a combination of vegetation indices and proper band 
selection for mangroves, enhances mapping extent quality while 
increasing spectral information through providing a richer 
spectral signature, which can improve the model's ability to 
distinguish between land cover types. Consequently, the 
accuracy metrics of the other models demonstrated promising 
results, indicating their suitability for mangrove extent mapping. 
These findings suggest that multiple model approaches can yield 
reliable estimates of mangrove extent and further develop 
independent assessment and inter-comparison of mangrove 
maps using both national and global datasets. 
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